²H ESE-ENDOR Study of Hydrogen Bonding to the Tyrosine Radicals Y_D[•] and Y_Z[•] of Photosystem II

Dee Ann Force,[†] David W. Randall,[†] R. David Britt,^{*,†} Xiao-Song Tang,*.[‡] and Bruce A. Diner*.[‡]

> Department of Chemistry, University of California Davis, California 95616-0935 E. I. du Pont de Nemours & Company Central Research and Development Department Wilmington, Delaware 19880-0173

Received September 11, 1995

Photosystem II (PS II) contains two symmetry-related redoxactive tyrosine residues designated Y_D (D2-Tyr160) and Y_Z (D1-Tyr161).¹ The conventional view of the function of tyrosine Y_{7} is as an electron transfer intermediate between the tetranuclear Mn cluster where water is oxidized and the photooxidized chlorophyll moiety P_{680}^+ .² Our recent ESE-ENDOR study indicates a 4.5 Å separation between the Mn cluster and Y_Z.³ This result along with an ESEEM study showing disorder in β -methylene hyperfine (HF) couplings⁴ has provided a basis for models in which the Y_{Z} radical is directly involved in water oxidation by acting as a photogenerated base abstracting protons from water bound to the Mn cluster.^{3,5} In contrast, Y_D is bypassed in the fast electron transfer between the Mn cluster and P_{680}^+ and is typically present as a dark stable neutral radical (Y_D^{\bullet}) . Though functionally distinct, Y_D^{\bullet} and Y_Z^{\bullet} have very similar EPR spectra.^{4,6,7} To trap the Y_Z^{\bullet} radical the Mn cluster is removed by chemical treatment, which slows the re-reduction kinetics of Y₂[•]. However, the Y₂[•] EPR signal decays faster than that of Y_D^{\bullet} , making observation of a pure Y_Z^{\bullet} EPR signal impossible in a PS II sample from a wild-type organism. Thus, to observe a pure Y_Z. EPR signal, Y_D must be selectively mutagenized to a non-redox-active residue such as phenylalanine.

The presence of an exchangeable proton hydrogen bonded to the phenolic oxygen of Y_D[•] is well established by ESEEM⁸ and ¹H ENDOR.⁹ Experiments designed to detect equivalent hydrogen bonding to Yz have been interpreted as providing positive,⁷ negative,¹⁰ and indeterminate⁴ results. In this study

- (2) Debus, R. J. Biochin. Biophys. Acta 1992, 1102, 209–352.
 (3) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Britt, R. D. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 9545–9549.
 (4) Tommos, C.; Tang, X.-S.; Warncke, K.; Hoganson, C. W.; Styring, S.; McCracken, J.; Diner, B. A.; Babcock, G. T. J. Am. Chem. Soc. 1995, 117, 10325-10335

(5) Hoganson, C. W.; Lyadkis-Simantiris, N.; Tang, X.-S.; Tommos, C. Warncke, K.; Babcock, G. T.; Diner, B. A.; McCracken, J.; Styring, S. Photosynth. Res., in press.

(6) Mino, H.; Kawamori, A. Biochim. Biophys. Acta 1994, 1185, 213-220.

(7) Tang, X.-S.; Zheng, M.; Chisholm, D. A.; Dismukes, G. C.; Diner,
B. A. *Biochemistry*, submitted.
(8) Evelo, R. G.; Hoff, A. J.; Dikanov, S. A.; Tyryshkin, A. M. Chem.

433. (c) Tang, X.-S.; Chisholm, D. A.; Dismukes, G. C.; Brudvig, G. W.; Diner, B. A. Biochemistry **1993**, 32, 13742-13748.

(10) Bernard, M. T.; MacDonald, G. M.; Nguyen, A. P.; Debus, R. J.; Barry, B. A. J. Biol. Chem. 1995, 270, 1589-1594.

Figure 1. ESE-ENDOR spectra and simulations of Yz' and Yb'. Simulation parameters are given in Table 1. (a) $g_N({}^2H)/g_N({}^1H)$ frequency-scaled Davies ¹H ENDOR ¹H₂O - ²H₂O difference spectrum of Y_D[•] in Mn-depleted spinach PS II particles. The spinach ²H₂O PS II particles were prepared by incubating ${}^{1}\text{H}_{2}\text{O}$ particles for 3 h in ${}^{2}\text{H}_{2}\text{O}$ buffers as discussed in footnote 14. (b) Mims ²H ENDOR spectrum of Y_D[•] in Mn-depleted spinach PS II particles incubated as in a. (c) Mims ²H ENDOR spectrum of Y_D in Mn-depleted Synechocystis PS II core preparations incubated for 14 h in ${}^{2}H_{2}O$ buffer (pD = 7.5). (d) Mims ²H ENDOR spectrum of Y_Z of Mn-depleted Synechocystis PS II core preparations from the Y_D-less mutant (D2-Tyr160Phe) incubated in ²H₂O as in c. The Yz radical signal was cryotrapped after illumination above liquid nitrogen. There was no evidence in either CW or ESE-detected EPR spectra for any radicals other than Yz* trapped by this procedure (data not shown). Additionally, ESE-ENDOR spectra were collected 4 G upfield from the g = 2.0023 field position to further minimize ENDOR contributions from any trace quantities of narrow radical species. Spectra are plotted as $\delta v = v_{RF} - v_D$. Experimental parameters: $v_{MW} = 10.106 \text{ GHz}$; B = 3609 G ($v_{H} = 15.35 \text{ MHz}$; v_{D} = 2.35 MHz). Trace a: T = 10.0 K. Traces b-d: T = 4.2 K.

we use ²H ESE-ENDOR to examine the hydrogen-bonding status of Y_Z^{\bullet} . An advantage of performing ²H ENDOR is that no subtraction of spectra is required; exchangeable deuterons give rise to new peaks in a frequency region well below that of nonexchangeable protons.¹¹ By using Synechocystis PCC 6803 PS II core complexes in which Y_D has been mutated to phenylalanine (D2-Tyr160Phe),⁷ we are able to perform ²H ESE-ENDOR experiments on Yz* following ²H₂O exchange without interference from the Yz signal. ESE-ENDOR experiments are performed using the Davies and Mims ESE-ENDOR sequences¹² implemented on our laboratory-built spectrometer.¹³

Figure 1 displays ESE-ENDOR data and simulations obtained on spinach and Synechocystis PS II tyrosine radicals. The

[†] University of California.

[†] University of California.
[†] E. I. du Pont de Nemours & Company.
(1) (a) Barry, A.; Babcock, G. T. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 7099-7103. (b) Debus, R. J.; Barry, B. A.; Babcock, G. T.; McIntosh, L. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 427-430. (c) Vermaas, W. F. J.; Rutherford, A. W.; Hansson, Ö. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 8477-8481. (d) Debus, R. J.; Barry, B. A.; Sithole, I.; Babcock, G. T.; McIntosh, L. Biochemistry 1988, 27, 9071-9074. (e) Metz, J. G.; Nixon, P. J.; Rögner, M.; Brudvig, G. W.; Diner, B. A. Biochemistry 1989, 28, 6960-6969. (f) Koulougliotis, D.; Tang, X.-S.; Diner, B. A.; Brudvig, B. W. Biochemistry 1995, 34, 2850-2856.
(2) Debus, R. J. Biochem. Biophys. Acta 1992, 1102, 269-352

⁽²⁾ Debus, R. J. Biochim. Biophys. Acta 1992, 1102, 269-352.

⁽¹¹⁾ Fan, C.; Kennedy, M. C.; Beinert, H.; Hoffman, B. M. J. Am. Chem. Soc. 1992, 114, 374-375.

^{(12) (}a) Davies, E. R. Phys. Lett. 1974, 47A, 1-2. (b) Mims, W. B.

Chem. 1994, 98, 12871–12883. [A 1 kW rf amplifier (ENI A1000) has been utilized in this study.]

 Table 1. ENDOR Simulation Parameters and Calculated
 Hydrogen-Bond Lengths for YD.

tyrosine radical		$A_{\rm iso}({\rm kHz})$	$A_{\rm dip}({ m kHz})$	$e^2 q Q^a (\rm kHz)$	r (Å)
Y_D^{\bullet} (spinach)1 Y_D^{\bullet} (spinach)2 Z_D^{\bullet} (spinach)2	¹ H ² H	0 0	+3700 +570	+200	1.67 1.67
\mathbf{Y}_{D} (Synechocystis)	۴H	-50	+470	+1/0	1.8/

^a $\eta = 0$ for all quadrupolar simulations.

presence of an exchangeable proton hydrogen-bonded to Y_D. is confirmed upon subtraction of a Davies ¹H ENDOR spectrum of ²H₂O-exchanged Mn-depleted spinach PS II membranes from the ¹H ENDOR spectrum of a natural abundance ${}^{1}H_{2}O$ sample 14 (trace a). The frequency axis of trace a has been scaled by the ratio $g_N(^2H)/g_N(^1H)$ to allow direct comparison with ²H ENDOR spectra. The Mims ²H ENDOR spectrum obtained on Y_D of a Mn-depleted ²H₂O-exchanged spinach sample is presented in trace b. The symmetric splitting of the ²H ENDOR perpendicular turning points around the frequency-scaled ¹H peaks in trace a demonstrates that this splitting arises from the nuclear quadrupolar (NQ) interaction for the I = 1 deuterium nucleus. Trace c shows the Mims ²H ENDOR spectrum of Y_D in Mn-depleted Synechocystis PS II particles.¹⁵ The slightly different HF and NQ couplings (Table 1) used to simulate the ²H ESE-ENDOR spectra of the hydrogen-bonded deuterons in traces b and c show that there are minor differences in the hydrogenbonding environments of the two species. However, the sharp and well-resolved transitions exhibited by both species indicate well-defined hydrogen bonds with little variation between individual PS II reaction centers. Radial distances between the electron spin and an exchangeable proton or deuteron can be calculated from the dipolar HF couplings using the expression $A_{\rm dip} = \rho_0 g_{\rm e} g_{\rm N} \beta_{\rm e} \beta_{\rm N} / r^3$, where ρ_0 is the unpaired spin density on the tyrosyl oxygen, g_e and β_e are the electronic g-factor and Bohr magneton, and g_N and β_N are the nuclear g-factor and nuclear magneton. Utilizing literature values for the combined C₄ and tyrosyl oxygen spin density¹⁶ in the two species and assuming $\rho_{C_4} = 0$, we obtain r = 1.67 Å for spinach ($\rho_{C_4+0} =$ 0.22) and r = 1.87 Å for Synechocystis ($\rho_{C_4+0} = 0.25$).

Trace d displays the Mims ²H ESE-ENDOR spectrum of Y_Z. cryotrapped after illumination in the Y_D-less Synechocystis mutant (D2-Tyr160Phe). There is a dramatic absence of resolved structure in the Y₂ [•] ²H ENDOR spectrum compared to the ²H ENDOR spectrum of Y_D .¹⁷ However, the overall widths of the ²H ENDOR spectra are comparable for both

(15) Tang, X.-S.; Diner, B. A. Biochemistry 1994, 33, 4594-4603.
(16) (a) Warncke, K.; Babcock, G. T.; McCracken, J. J. Am. Chem. Soc.
1994, 116, 7332-7340. (b) Rigby, S. E. J.; Nugent, J. H. A.; O'Malley, P. J. Biochemistry 1994, 33, 1734-1742.

tyrosine radical species, indicating similar magnitudes of dipolar HF couplings. The ²H ENDOR data thus indicate that there is a hydrogen bond to the phenolic oxygen of the Y_Z tyrosyl radical. However there is sufficient site-to-site disorder in the hydrogen bonding to lead to a loss of resolved structure in the ²H ESE-ENDOR spectrum of Y_2^{\bullet} . The dominant term describing the ENDOR powder pattern of Y_D is the dipolar HF coupling which depends on the distance between the tyrosyl oxygen and the deuteron exchanged into the hydrogen-bond site. The loss of resolution in the Y₂ spectrum is thus likely due to a distribution of O····²H bond lengths. The e^2qQ NQ parameter of a hydrogen-bonded ²H is also dependent on the hydrogenbond length,¹⁸ and a distribution of bond lengths will therefore also lead to a distribution of the NQ coupling, further reducing resolved structure in the ²H ESE-ENDOR powder pattern. It is important to again note that these spectra are obtained in Mndepleted PS II particles. We have previously determined that the Mn cluster is in close proximity to $Y_{Z_1}^3$ so the removal of the Mn cluster may disrupt the normal hydrogen bonding of this tyrosyl radical, causing the disorder observed in the ²H ESE-ENDOR spectrum. One possible catalytic site geometry suggested by the proton or hydrogen atom extraction models^{3,5} would have the Yz tyrosine hydrogen bonded to Mn-bound water. In this case, removal of the Mn cluster would destroy the well-ordered hydrogen bonding to waters positioned by ligation to the cluster, replacing it with heterogeneous hydrogen bonding to waters and/or amino acid residues remaining in the disrupted Mn binding site. The disorder observed via ESEEM⁴ in the Y_Z dihedral bond angle between the tyrosine ring normal and the β -methylene C-H bond of Mn-depleted PS II particles is likely due to the disorder in hydrogen bonding, because a well-defined hydrogen bond at an angle well off the phenolic O-C bond axis provides a steep energy barrier for rotation of the ring from its minimum energy position. The rotational flexibility of Y_Z in the Mn-depleted PS II particles is crucial for the proton or hydrogen atom abstraction models. In the intact system the Y_Z orientation would have to be sufficiently flexible for it to move between two well-defined orientations, one of which allows it to donate protons to a proximal base upon its oxidation by P_{680}^+ , another of which allows it to abstract protons or hydrogen atoms from waters bound to Mn during the S-state transitions. In either configuration the Y_Z / Y_Z[•] hydrogen bonding may be quite well-defined, but the oxidation and subsequent re-reduction drives orientational switching between the two sites.

Acknowledgment. A grant from the National Institutes of Health to R.D.B. (BMT 1 R29 GM48242-01) and NRICGP grants from the United States Department of Agriculture to R.D.B. (92-01413) and B.A.D. (94-01692) are gratefully acknowledged.

JA953122D

⁽¹⁴⁾ PS II enriched membranes (Kim, D. H.; Britt, R. D.; Klein, M. P.; Sauer, K. Biochemistry 1992, 31, 541-547) were Mn-depleted according to a modified method of Tamura and Cheniae (Biochim. Biophys. Acta 1987, 890, 179-194). Mn-depletion was performed in 0.8 M Tris (pH 8.5) for 30 min under room light at 277 K. Following centrifugation and two washes (20 mM Tris (pH 8.5), 400 mM sucrose; 400 mM MES (pH 6.0), 400 mM sucrose, 15 mM NaCl, 5 mM MgCl₂, 5 mM CaCl₂), ferricyanide was added to a final concentration of 0.5 mM and the pellet was loaded into EPR tubes. ²H₂O-exchanged PS II particles were prepared by performing the Tris-wash procedure as above in ²H₂O-enriched buffers (pD 8.5 and 6.0).

⁽¹⁷⁾ The comparable amplitudes of ENDOR spectra for traces c and d indicate that the broad spectrum of d is not just a small residual underlying component of spectrum c.

⁽¹⁸⁾ Hunt, M. J.; Mackay, A. L. J. Magn. Reson. 1976, 22, 295-301.